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THE RELATION BETWEEN POWER AND ENERGY IN THE
SHOCK INITIATION OF DETONATIONS

L Basic Theoretical Considerations and the Effects of Geometry

1. INTRODUCTION

The early studies of direct initiation of gaseous detonations 1 ' 2 ' 3

established the importance of the magnitude of the source energy. More

recent experiments9' 5 , 6 have shown the importance-not only of the energy

but also of the rate at which the energy is deposited, namely the power. The

experimental results of Lee et al. 5 indicate that there is a minimum detona-

tion energy, Em, below which a detonation would not occur no matter what

the power is and that there is a minimum power, P,, below which a detona-

tion would not occur nc matter what the total energy is. Later, they noted 6

that the requirement for a minimum value for the power of the source indi-

cates that the source must be capable of generating a shock wave of certain

minimum strength (Mach number). They also concluded that the minimum energy

requirenent implied that the shock wave oust be maitained at or above this

minimum strength for a certain minimum duration.

\ Recently these ideas have been used by Dabora 7' 8 to obtain a relation

between the power and energy required for the direct initiation of hydrogen-

ail detonations in a shock tube. However, this power-energy relation is very

dif Eerent qualitatively from those of Knystautas and Lee 6 . More recently

Abot seif and Toong 9 have proposed a simple theoretical model to determine the

power-energy relation and predict their respective threshold values. The

predictions based on their model were in qualitative agreement with the

experiments of Knystautas and Lees.

Mmnusaipt approved June 22, 1983.
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In this paper we have modified and extended the basic model proposed by

: Abouseif and ToonS 9 and have used it to determine the relation between the

power and the energy required for the initiation of planar, cylindrical and

. spherical detonations in a detonable gas mixture. Specifically, we discuss

its application to a stoichiometric oxy-acetylene mixture. We have used the,

results from the model to explain the qualitative differences between the

- experimental results of Knystautas and Lees and Dabora 7 . The relation

between the minimumr power requirement and the Mach number . the shock wave

has also been examined. Some of the limitations of the model are discussed,

and several applications are described.

2
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It. THE THEORETICAL MODEL

We can, in principle, study the di:ect initiation of detonations by

performing detailed numerical simulations of the flow field generated by a

given source of energy. In general, such a calculation is a complicated,

multi.imensional, multispecies, time-dependent problem. Part of the

complication and cost of such calculations arises from the solution of the

conservation equations, and part of it arises from integrating the large

number of ordinary differential equations describing the chemical reactions.

This latter factor is further complicated by the fact that we usually do not

have an adequate representation of the chemical reactions with which to work.

Thus, a convenient, inexpensive way to evaluate the relative tendency of

different explosive mixtures to detonate would be very useful. Below we

develop and expand a simple theoretical model proposed earlier by Abouseif

and Toong 9 . Although this approach is not as precise as solving the full set

of equations numerically, it offers a number of important insights and gets

around the requirement of knowing the detailed chemical kinetics.

The model considers the fl.ow generated by the motion of a constant

velocity shock wave in planar, cylindrical and spherical geometries. As this

shock wave passes through a gas mixture, the gas temperature and pressure

increases. Due to this increase in temperature and pressure, ignition can

occur in the shock heated gas mixture after the elapse of a certain time ar.d

this may lead to a detonation.

A constant velocity shock wave can be formed in each of the three

geometries by the motion of a constant velocity piston1 0 ' 1 1 . Furthermcre,

it has been shown1 1 that a pressure and velocity field identical to that

ahead of a constant velocity piston can be generated by appropriate energy
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addition. In Appendix A we have derived expressions for the energy and the

power which must be delivered by a source to geaerate a constant velocity

piston in the three geometries. The source power required is given by
___ a a-il (I)

PS(t) -••ccppUp

where Ca , 1, 2w, 4w for a a 1,2.3 corresponding to the planar, cylindrical

and spherical geometries respectively; p and up are the pressure and

velocity at the piston surface and t is the duration of energy deposition.

The energy deposited is given by the time integral of the power, that is

C a a a 
(2)zs(t) =- 7W-T "P' pU a .()

From the above equations we note that a planar energy source with a

constant rate of energy deposition can generate a constant velocity piston in

a planar geometry. An example of such an energy source is the high pressure

driver in a uniform shock tube. However for a constant velo:ity piston in a

cylindrical geometry, we need a line source with a rate of energy deposition

proportional to time, and in a spherical geometry we need a point source with

an energy deposition rate proportional to the second power of the time.

Equations (1) and (2) give the source power and the source energy

required to generate a constant velocity piston in the three geometries. As

shown later (in Appendix B), if the piston velocity is steady, a constant

velocity shock wave could be generated ahead of it. If the piston velocity

is reduced (by altering the energy depoiition rate), rarefaction waves will

be generated ahead of it and these, on catching up with the shock wave , will

4

\ .. -.



reduce the shock velocity. However if the shock has been in motion for a

sufficiently long time, chemical reactions would begin in the shock heated

gas mixture. Then, even if the piston decelerates and produces rarefaction

waves, these will have very little effect on the motion of the shock. In

this case we could have a detonation.

Let us call the minimm- time of shock travel required to initiate

a detonation tcr. Using this in Eqs. (1) and (2), we have

T Ca
(Es)cr T" 7-a- Up tpcr (3)

and

(Ppu t .(4)s cr r~TY= a p p cr

In the planar case, the pressure p p and fluid velocity up at the piston

surface are the same as those just behind the shock. However, in the

cylindrical and spherical cases, the flow field between the shock aud the

piston surface is nonuniform and can be obtained by solving the governing

partial differential equations. However, the solution procedure is

considerably simplified if we seek a similarity solution. The details of

this solution procedure are given in Appendix B.

In order to determine the power-energy relation using Eqs. (3,4) we also

need to know tcr. This time must at least be equal to the time at which

ignition first occurs in the flow field9 . As noted by Urtiew and

Oppenheim, 12 ignition usually occurs first at the contact surface (i.e., at

the piston surface here) since the temperature and pressure is highest at

this location. So a first estimate of the time tcr would be the

induction delay time corresponding to the conditions at the piston surface.

I5



III. RESULTS AND DISCUSSION

We have used the model described above to determine the power-energy

relations for the initiation of planar, cylindrical, and spherical

detonations in a stoichiometric oxy-acetylene mixture. The. initial

temperature and pressure of the mixture were taken to be 300 K and 100 totr

(0.1316 atm) to correspond to the initial conditions in the experiments of

Kaystautas aua Lee 6 . As a first approximation, the time duration necessary

for successful initiation was assumed to be equal to the chemical induction

time of the u-ture corresponding to the conditions at the piston surface.

The critical source power given by Eq. (4) is time dependent for the

cylindrical and spherical cases. In order to relate the critical source

energy to a critical source power, we need to define an average or

"$$effective" power. Following Abouseif and Toong 9 , we define an average

critical source power as

(P(z cr (5)

savy t cr

This power also corresponds to the critical peak averaged power of the source

as defined by Knystautas and Lee 6 . For the discussion below, we have used

the terms power and energy to refer to the average critical source power

(Fq. (5)) and the critical source energy (Eq. (3)).

A. Cylindrical Detonations In an Acetylene-Oxygen-Nitrogen Mixture

We have determined the power-energy relation for the initiation of

cylindrical detonations using Eqs. (3) and (5). The induction time data used

were those obtained by Edwards et al. 1 3 for an acetylene-oxygen-nitrogen

(2:5:4) mixture and are given by:

Log (r[0 2 ]) -- 9.41 (+ 0.2) + 71.35 (± 3.34) (6)
19.14 T
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where T is the induction time in seconds, [02] is the concentration in

mol/liter, and T is the temperature in thousands of degrees K. Three dif-

ferent power-energy relations obtained from the theoretical model are shown

in Figure 1. Curve A was obtained by using the smallest value of the induc-

tion time given by Eq. (6), that is, by choosing the negative signs. Curve B

was obtained by -.sing the mean values and curve C by using the largest value

of the induction time (by choo3ing the positive signs). The arrows on curve

C indicate the direction of increasing Mach number. First, we note that each

curve has a minimum power aad a minimum energy. We also observe that as the

Mach number decrea'es below the Mach number corresponding to the minimum

pcwer, both the average source power and the source energy increase. How-

ever, when the Mach number increases above the Mach number corresponding to

the minimum power, the energy first decreases to the minimum energy and then

increases again. All three curves exhibit these same qualitative trends.

The ahape of these curves can be explained in the following manner. As

the Mach number of the shock wave decreases, the pressure and the temperature

behind it decrease. This decrease also results in a decrease of the pressure

and velocity at the piston surface. This would tend to decrease both the

power aad the energy since, as seen in Eqs. (1,2),

'_p .U 2t (7)
p p

E - ppu~t2 (8)
p p

This tendency is, however, opposed by the tendency of the induction time to

increase with decreases in the pressure and the temperature. For low Mach

numbers, (i.e., low temperatures behind the shock) a small decrease in the

Mach n-rmber of the shock wave leads to a large increase in the induction

7
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Figure 1. Power-energy relations for the initiation of cylindrical

detonations in an acetylene-oxygen-nitrogen mixture (2:5:4)

at 0.1316 atm and 300K. The data for curve D was obtained from

spark ignition experiments (6]. Curves A, B, and C are explained

in the text. The arrows on Curve C indicate the direction of

increasing Mach nnber.
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time. The shape of the curves in Figure 1 implies that this increase in

induction time is more than sufficient to compensate for the decrease in the

pressure and the velocity for Mach numbers below that corresponding to the

minimum power. Therefore both the power and the energy ivcraase with

decreasing Mach number. Since the energy is proportional to the product of

the power and the induction time (Eqs. (7,8)), the energy increases faster

with induction time than the power does. As the Mach number increases above

that corresponding to the minimum power, the increase in the pressure and

velocity is larger than the decrease in the induction time. Therefore the

power increases. However, for a certin range of Mach numbers, the increase

in the pressure and velocity is not sufficient to compensate for the decrease

in the square of the induction time. Therefore the energy decreases until it

attains a minimum value, even though the power increases. Finally, for Mach

numbers above that corresponding to the minimum energy, the increase in the

pressure and velocity are easily able to overcome the decrease in the induc-

tion time with increasing Mach number and both the power and the energy

increase. This occurs because the rate of decrease of the induction time

with temperature is small for high temperatures (i.e., high Mach numbers)

according to Eq. (6).

The power-energy curve obtained using data from the spark ignition

experiments 6 of Knystautas and Lee has also been included in Fig-re 1 as

curve D. The data for curve D is the same as that used by Abouseif and

Toong 9 for their Figure [1), and was originally presented in Figure (4) of

Knystautas and Lee 6 . Curve D exhibits the same qualitative trends as those

of the theoretical curves discussed above. However, we observe that the

values of the minimum power and the minimum energy from the four curves are

9
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• very different from each othe:. The differences in the values of these

parameters from the three "theoretical" curves (A,B, and C) indicate that the

experimental uncertainties in the values of the induction times used have a

significant effect on the value of the minimum power and the minimum energy.

The minimum power varies from about 0.3 MW/cm to about 1 MW/cm and the

minirmm energy varies from about 0.012 J/cm to about 0.1 J/cm. The

experimentally determined minimum power (from curve D) is about 0.13 MW/cm,

which is lower than the calculated values, and the minimum energy is about

0.1 J/cm, which is at the top of the range of calculated values.

*" The quantitative differences between the experimental and theoretical

values could be due to a variety of factors, a few of which we now discuss.

As cbserved from curves A, B, and C, uncertainties in the induction time data

7. can have a significant effect on the values of the minimum power and the

i minimum energy. Expressions such as Eq. (6) for the induction time are

S obtained by fitting to a limited range of experimental data. However, here

we have used Eq. (6) for a range of temperatures and pressures far greater

than that over which it was determined. The Mach numbers and the

corresponding temperatures and pressures at the shock and the piston surfice,

"along with the induction time used for obtaining curve B, are given in

b Table I. We see that for Mach numbers greater than about 14, the
N

ter.peratures and pressures are so high that the entrapolated induction time

*- is of questionable validity. However, for obtaining the theoretical results,

we had assumed a constant value of 1.2 for Y, the ratio of specific heats.

We see from Table I that for high Mach numbers, the y of the shocked gas

could be very different from that ahead of the chock wave because of the

large temperature differences. Using an inccrrect value for y could also

10
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TABLE I

Parameters at the Piston Surface for Shocks of Different Strengths

M Ps(atm) Ts(K) pp(atm) Tp (K) Tp(usec)

4.0 2.285 769.5 2.378 774.6 1485.3

5.0 3.577 1037.9 3.701 1043.3 73.823

6.0 5.156 1365.4 5.320 1372.6 9.4207

7.0 7.023 1752.4 7.232 1761.0 2.2381

8.0 9.176 2198.8 9.439 2209.2 0.8003

9.0 11.616 2704.6 11.939 2717.0 0.37639

10.0 14.344 3270.0 14.736 3284.7 0.21357

12.0 20.661 4579.2 21.209 4599.2 0.098452

14.0 28.126 6126.3 28.859 6152.6 0.060420

16.0 36.740 7911.5 37.685 7945.0 0.043616

18.0 46.502 9934.6 47.687 9976.4 0.034733

20.0 57.413 12195.8 58.870 12246.8 0.029447

Note: A constant T of 1.2 has been assumed for obtaining the above results.

/



explain some of the quantitative differences between the experimental and

theoretical results.

B. Effect of Y on Power-Energy Relations

We have repeated the power-energy calculations using different but

constant values for Y on both side3 of the shock wave and the results ari

shown in Figure 2. We observe that Y does indeed have a significant effect

on the minimum power and the minimum energy. When Y is changed from.1.1 to

1.4, the minimum source power decreases from 2.0 MW/cm to 0.18 MW/cm and the

minimum energy decreases from 0.065 to about 0.02 J/:m. The Mach ntmber at

which the shock must travel to attain the minimum power is also very

different, as seen fn Figure 3 where the average source power is shown as a

function of Mach number for three values of Y. Changing Y from 1.4 to 1.1

doubles the Mach number corresponding to the miimum power from 8 to 16. The

effect of ' on the power-energy relation arises partly from the factor

(Y/y-l) in Eqs. (3) and (4) and partly froMa the fact that the temperature

behind a shock of given Mach number is very different for different Y's.

The effect of the factor (Y/r-l) is to change quantitatively the values

of the source power and the source energy corresponding to the shock of a

given Mach number and is the same for all Mach numbers. The changes in the

temperature behind a shock wave due to assumed differences in y is, however,

a function of the shock Mach number. Let us consider a shock wave of the

Mach number 10. In Table II we have given the pressure ratio, the

temperature ratio and the temperatures across this shock wave for different

values of Y. We have also included the case where y is different across the

shock wave as case 3. For obtaining case 3, Eqs. (C7-C13) from Appendix C

12
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TABLE II

Effect of-the Ratio of Specific Heats

CASE TO Ys Ps/Po Ts/To To Ts

1 1.2 1.2 109.000 10.900 300 3270.0

2 1.3 1.3 112.913 15.710 300 4712.89

3 1.3 1.2 118.426 11.454 300 3436.26

Note: The conditions ahead of the shock wave are deloted by "o" and those
behind by "s".

/
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Figure 2. Effect of Y on the power-energy relations for the initiation of

cylindrical detonations in an acetylene-oxygen-nitrogen mixture.
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were used. We see that the temperature behind the shock wave is

significantly lover than that for case 2. Case 3 is a more realistic case

than case 2, since y is generally lower behind the shock. However, the

appropriate Y for conditi~ns behind the shock wave is different for different

Mach numbers, since the temperatures Are different. Thus a better approach

is first to guess a Y for each Mach number and use it to calculate the

temperature behind the shock. This new temperature implies a nev Y, as

discussed in Appendix C. Using this new y in the modified shock relations

(Y~q3. (C-C1)), we get a new temperature. This iterative procedure can be

continued till convergence is achieved.

The power-energy calculations were repeated using the correct value for

y, that is, for each Mach number including the effect of temperature on Y.

in Figures 4 and 5, the average source power and the source energy'have been

shown as functions of the Mach number for three different conditions (A, B,

and.C). Curves A and C were obtained assuming y constant and have already

been discussed. Curve B is obtained using the variable Y. For low Mach

numbers, curve B lies close to curve A and for very high Mach numbers it

tends towards curve C. This is not surprising since for the acetylene-

oxygen-nitrogen mixture being studied here, yV v&ries fromn 1.31 to 1.16 when

tLe Mach number changes from 2 to 24. From curve B in Figures 4 and 5 we

also note that the minimum power and the minimum energy conditions occur at

Mach number of 10.0 and 15.5 respectively. The power-energy curve obtained

with the variable Y is shown as curve B in Figure 6 where we have also shown

three other curves obtained assuming constant YV. We note that curve B lies

predominantly between the curves with 'V of 1.1 and 1.3 and is very similar to

the curve with Y of 1.2.

16
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explained in the text.

17



1 0 'I * * ' I ' * i , ' I

C2 H2:02:N2 /2:5:4

103-

102

! U

0

0co 10
uas 1A4'y. A 8

>

1.0

10-1

0 4 8 12 16 20 24 28

SHOCK MACH NUMBER

Figure 5. The average source power as a function of the shock Mach number.

Curves A and C were obtained assuming y to be onstant across the

shock wave. Curve B was obtained assuming y Co be variable as

explained in the text.

18



......... .- r...............•.- ,- .. ,- -Z . -.i - z p-• . • - ".-'- r" u, .- -.-.... - "'... , .•. .. ...

10.0 1 I 1 F I I I I I F I F

C2H2: 02: N2/2:5:4

=1.4 1.2 1.1
1.0

Bm

LU

0.1

0.01
0.01 0.1 1.0 10.0

AVERAGE SOURCE POWER (MW/cm)

Figure 6. Effect of variable Y on the pover-energy relations for the

initiation of cylindrical detonations in an acetylene-oxygen-

nitrogen mixture.

1.

, .19

.L:



From the above discussion it is clear that the effect of using the

correct Y1 is mainly to alter the Mach number corresponding to the minimum

power and the minimum energy condition. However, the calculated values of

the minimum power and the ailnirmum energy are still different from those

obtained experimentally. Therefore we examine another possible reason for

the differences between the experimental and the theoretical values: the

uncertainty in the appropriate time to be used for t crin Eqs. (3) and (5).

C. Critical Time for Energy Deposition

As a first approximation, we assume that energy must be deposited ~antil

ignition occurs at some point in the flow field between the shock and the

piston surface. Since, in general, the temperature and pressure is highest

at the piston curface, we used the chemical induction time corresponding to

these conditions as the appropriate time for energy deposition. However,

when thare is fluid motion, ignition can occur before the time corresponding

to the constant volume, homogeneous chemical induction time. For example,

for a certain range of temperatures and pressures, oxy-hydrogen mixtures with

small perturbations could have significantly reduced ignition times. The

specific effect of this phenomenon on the power-energy relations will be

reported in a subsequent paper. In gas mixtures which are not particularly

sensitive to perturbations, the shortest induction time in the shocked region

seems to be the necessary condition for the initiation of detonations.

However, we need to consider whether this is a sufficient condition also.

Shock tube simulations1 4 have indicated that the time at which a

detonation wave is first observed is only very slightly longer than the time

at which ignition first occurs. That is, the time between ignition and the

20



formation of a detonation wave i3 small when compared to the induction time.

This is not surprising when we consider the fact that for many reactive

systems, the reaction time is very small ccmpared to the itLducticn time. The.

results of Abouseif and Toong on the initiation of planar detonations 9 also

supports this observation. However we have not studied the effect of

geometry on the time between ignition and detonation. It could very well be

that due to the volume change in spherical and cylindrical geometries, this

time is significant when compared to the induction time. This needs to be i

studied before one can confidently use the induction time as the appropriate
4

time for tcr. 1

We have compared the results from the theoretical model for the case of
64

cylindrical detonations with the experimental results of Knystautas and Lee 6

because in both cases the amount of energy deposited was proportional to the

second power of the time. However, it is important to note that in the

theoretical model we have considered only constant velocity shock waves and

it was this that made it possible to assign a single induction time to each

sho,;; wave. If the velocity of the shock wave is not constant, it is not .

possible to assign a single induction time to it since the flaw field behind

the shock wave would be time-dependent. Thus, shock waves oZ different time

histories can deposit the same amount of energy but at different average

source powers. This could be an imporant factor in the quantative

differences between the experimental and theoretical values.

D. Initiation of Planar Detonations

The derived power-energy relation for the initiation of planar detona-

tions in the same oxy-acetylene mixture is shown in Figure 7. In this
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Figure 7. Paver-energy relations for the initiation of planar detonations.

The x's are data obtained from shock tube experiments [7]. -
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figure, we also show the shock tube data of Dabora 7 on the direct initiation

of detonations in a stoichiometric hydrogen-air mixture. The point to notice

is that both curves exhibit the same qualitative behavior. Unlike the

cylindrical case, each value of the power corresponds to an unique value of

energy. The direction of increasing shock strength (as determined by the

Mach number) is also shown in Figure 7. In the planar case, we see that as

the Mach number decreases the power always decreases. As noted earlier in

the cylindrical case, as the Mach number decreases, the power decreases only

up to the minimum power. Then the power increases with a decrease in the

Mach number of the shock wave. Therefore, the qualitative difference in the

experimental data of Knystautas and Lee (shown in Figure 1) and Dabora (shown

in Figure 7) are due to the lifference in the geometry of the two

experiments.

We also observe in Figure 7 that as the Mach number decreases, we need

more and more energy to initiate a detonation. ,he trend of the curves

indicates that there is a minimum Mach number below which a detonation will

not occur (i.e., would require an infinite amount of energy). The value of

the power corresponding to this minimum Mach number is the minimum power.

This agrees with the observation made by Knystautas and Lee 6 that the

requirement for a minimum value of the source power indicates that the source

must be capable of generating a shock wave of a certain minimum Mach number.

However, we observe from Figure 1 (see also Figures 3 and 5) that for the

case of cylindrical detonations, the minim2m power does not correspond to the

shock wave of minimum Mach number. In the cylindrical case, it is possible

to initiate a detonation with a shock wave of lower Mach number than that

corresponding to the minimum power. Such a shock will have to be maintained
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for a longer time than the shock corresponding to the minimum power and hence

will require a larger amount of energy.

E. Initiation of Spherical Detonations

The power-energy curve for the initiation of spherical detonations is

similar to the curve for the cylindrical case. However, for the cas2 of

spherical detonations, the power is

P - p U3 t2  (9)
p p

-but the energy is still

E - P t. (10)

Since the power and energy are proportional to higher powers of the time, t

uncertainties in t will have a greater effect on the value of the minimum

power and the minimum energy. Further work is being carried out currently to

study the initiation of spherical detonations in hydrogen-air mixtures and to

compare this to experimental data.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have used a theoretical model to determine the relation

between the power and the energy required for.'the initiation of planar,

cylindrical and spherical detonations in a gas mixture. The results

discussed above show that though the simple theoretical model has significant

limitations, it can still be used to explain the qualitative differences in

the power-energy relations obtained from different experimental arrangements.

Another result from the model is that the mir-imum power requirement

corresponds to a shock of minimum Mach number only in the case of planar

detonations.

The results from the model on the initiation of cylindrical detonations

in an acetylene-oxygen-nitrogen mixture qu'alitatively agree with experimental

data. Some of the reasons for the quantitative differences have been

examined. one of the important parameaters in the model is the time required

for deposition of the critic~al energy required for the initiation of

detonations. This time is related to the induction time and the results

presented above show that uncertainties in the induction time data used can

have a significant effect on the power-energy relations. The results also

indicate that further work needs to be done to determine the effect of the

geometry on the time for critical energy deposition.

The quantitative differences between the experimental and theoretical

results may also arise because of the model assumption that the velocity of

the shock wave is constant. This may not be so in the experiments.

Furthermore, the model considers only the minimum power and energy required

to initiate a detonation wave. We have not examined whether this would

result in a self-sustained, propagating detonation wive. Detonation
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propagation is characterized by complicated interactions among incident shock

waves, transverse waves and Mach stems which form detonation cells. These

must be described by multidimensional theories and simulations. The results

from such studies need to be considered to extend the work presented here to

the study of self-sustained detonation waves.

Oine application of the model presented here is to determine the relative

tendency of different explosives to detonati, since the limitations of the

model would then be less critical. This would be particularly useful for

studying the effect of additives on the deton~bility of condensed phase

explosives. Further work is being carried out to modify the model for such

applications.
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Appendix A

Source Power and Energy Required to Generate a Constant Velocity Piston

Here we derive the power and energy required by a source to generate a

constant velocity piston in planar, cylindrical and spherical geometries.

Let us first calculate the work done by a constant velocity piston moving

from time to to time t in a gas mixture. If the effects of viscosity, heat

conduction and chemical reaction are negligible during the time internal

(t-to), the pressure ahead of the constant velocity piston would also be

constant. Mhen the work done by the piston on the gas mixture is given by

f vpp dv p p (v -v) (Al)

0

where vo and v are the volumes at time to and t, repectively. The volume/

change (v - vo) depends on the geometry of the system. In planar geometry,

the volume swept out by the piston is "

v-v -° A(r-r) , (A2)

0 0

here ro is the position of the piston at time to and A is the cross

sectional ,rea of the planar piston. In cylindrical geometry,

v -V (w r2 - ) , (r))

wh re £ is the characteristic linear dimension of the system and in a

sp erical geometry,

v-v % wr W -rwo r (A4)
33 0
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The position of the constant velocity piston at time t is given by

r r + u (t-t) , (AS) Sp 0

where up is the velocity of the piston. Without loss of generality we can

assme that ro = 0 at time to 0 0. Using Eq. (AS) in Eqs. 'A2), (A3) ard

(A4), we have

Ba a a
v-v u t (A6)

where BC, A, 2VI, and 4w for a1l,.2, and 3 corresponding to the planar,

cylindrical and spherical ge metries respectively.

Substituting Eq. (A6) into Eq. (Al) we have

Bi

B = C9 a C&)"-- -p a a

Defining

w - or a-p A

for a 2 ,and (A8)

IV

=w for a 3

we have

C
w - p u ( t . (A9)

It is important to note that the above expression for wp gives the work

done by the piston, per unit area in planar geometry and per unit length in

cylindrical geometry.
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In order to obtain the above amount of work wp, we will need a source

which can generate and maintain such a constant velocity piston. It has been

shown that a pressure and velocity field identical to that ahead of such a

piston can be generated by appropriate heat addition. In order to

"demonstrate this, consider heat addition to a closed system of arbitrary

volume vo. For such a system with no heat losses to the surroundings, the

first law of thermodynamics states that the change in the internal energy of

the system is

dEint indq + dw (AlO)

where dq is the amount of heat energy deposited and dw is the work done by

the system. Let us assume that heat energy is added to the system to take it

from the volume vo to the volume v at a constant pressure, p. Then, the

change in the internal energy of the system (assuming a mixture of perfect

gases) is given by
pv pv

dEn " -- -- (All)t I -7-I 7 (v-v)

The work done by the system in going from vo to v at the constant pressure

p is

d - pdv - p (v-v 0 (A12)
v
0

Substituting Eqs. (All) and (A12) in Eq. (Al0), we find thut the amount of

heat energy vhich has to be deposited to create the required change in the

system is

E• = (v 0o)+ p (V-vo1 dep y-I

Y 'I' p (v-V)
Y-1 02
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Substituting Eq. (AW) in Eq. (A13) we have the source energy required to

create a constant velocity piston in the three geometries,

E (t) anPp P + . (A14)

The power, or the rate at which energy is deposited, is given by

P .(t) dR a t

= YCput . (Ap u)
-1 P p

3 0.
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Appendix B

Flow Field between the Piston Surface and Shock Wave

In the planar case, the pressure and fluid velocity at the piston

surface are the same as those just behind the shock. However, in the

cylindrical and spherical cases, the flow field between the shock and the

piston surface is nonuniform but can be obtained by solving the following

equations. For a one-dimensional flow, the equations for the conservation of

mass can be written as:

t- W Iu + (0-l) 0 1 -o, (l)

and for conservation of momentum as:

au + al(12)-T-÷ -W - f

where a - 1, 2, and 3 for planar, cylindrical and spherical coordinates

respectively. Since we are primarily concerned with the flow field before

any significant reactions occur, we can assume the flow is isentropic if

diffusive transport effects are negligible. For a perfect gas, the energy

equation then becomes

(B3)
dp P

We can obtain the flow field between the piston surface and the shock wave by

solving the above sys~tem of partial differential equations with appropriate

boundary conditions. However, the solution procedure is considerably
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simplifisd if we seek a similarity solution. Then the system of partial

differential equations can be reduced to a system of coupled ordinary

differential equations:

(u-L) dP du,+a_1 ) 0  (B4)

(uL) du -.
dL dL 05)

dr.~._d_ (B6)
dL P dL

In the above system of equations, the density P, the velocity u and the

pressure p are all functions of the similarity variable L, which is equal to

the radial location r divided by the time t. For a spherical geometry

(0-3), Eqs. (B4) - (B6) reduce to those formulated by Taylorl 0 . These

equations can be further reduced to a set of two equations in the dependent

variables u and a, the sound speed, which is a function of p and P. For a

mixture of perfect gases, using

a2.I (37)

and appropriately combining Eqs. (34) - (06) we have:

* V
du (B)

d (y-) (u-L) - (38)
dL dL

and

d.u (B9) •-)2-_- - (a-I) F.( - ( )] .(39)

Lda
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The boundary conditions for obtaining the flow field between the shock wave

and the piston surface are: just ahead of the piston surface

r
L _2 *u (BlO)

p t p

and just behind the shock,

r

L t U

a 2 Ps 012)
S P

and

uu . (313)

Normal shock relations can be used to estimate us, ps and ps for a

shock of known velocity, Su.

Taylor solved the equivalent of Eqs. (B8) and (B9) in spherical co-

ordinates to obtain the properties of the airwave surrounding an expanding

sphere"O. He first assumed a piston Mach number and then numerically

integrated the equations from the piston surface to different locations

ahead of it. He then solved the normal shock relations for various shock

strengths. When he plotted these two solutions, he fcund that there was a

location in the flow field ahead of the piston which had the same physical

conditions (velocity and sound speed) as that behind a shock wave of a

particular Mach number. Therefore, he could uniquely relate the flow field
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V.

ahead of a piston of given Mach number to that behind a particular shock

wave. The existence of such a unique solution implies that a constanc

velocity piston will produce a constant velocity shock wave (in a spherical

geometry). Since we find that such solutions exist in cylindrical geometries

too, we can say that a constant velocity piston will produce a constant

velocity shock wave in planar, cylindrical and spherical geometries provided

we have a similarity solution.

We have adopted a different approach to solve Eqs. (08) and (09). For

a shock of given Mach number, we determine the flow conditions behind it

using the normal shock relations given in Appendix C. Knowing a. and us,

Eqs. (B8) and (09) can be numerically integrated from L. to the piston

location to give up and a2 . However we do not know L a priori.
IL p p p

So we have to solve the equations until we find a L. which is equal to p

(See Eq. (BIO). -herefore it is more convenient to rewrite Eqs. (U8) and

(B9) in terms of a new dependent variable u/L. Then, we can solve the

equations from uI/L. to I.

Transforming Eqs. (08) and (B9) to the new dependent variable C, where

I• = U ~~(BiQ)...
L

and defining

n - 7 0- ( 15)

and

z log eL, (016)

we have

34

. ,j



dn. ni[2n - 2(0-0)2 - •(o-1)(g-1) (Y-1) (E-1)] (B17)
d• C [Ian - (1-) 1]

and

dz -1 0 -1(-F 2 8)
d -(l-0)] 1

Eqs. (B17) and (B18) are solved along with the boundary conditions given

below. Just behind the shock, that is, at

U
5 ~ *(B19)

z loge (Su) (B20)

a-•d

a
2

11 =. (B21)

Just ahead of the piston surface,

U

Cp L . 11
p

From the solution of Eqs. (B17) and (B18), we get zp and np. Using these

quantities in the equations given below we calculate Up and ap,
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r1
°-

u -exp (Z) (B23)
p p

a 2 n u2  . (024)

In addition to u (from Eq. (B23)) we also need the pressure at the piston

surface which we can get using Eq. (B24) in the following equation,

2y

2 p "P (B25) i

Si

To complete the solution procedure we still need the fluid velocity, the

pressure and the sound speed just behind the shock wave for (Eqs. (U19),

(B21) and (B25)). Since we are restricting our attention in this paper to

one dimensional flows, we can use normal shock relations to obtain these

quantities. The normal shock relations, assuming that Y (the ratio of

specific heats) can vary across the shock wave, have been derived in

Appendix C.
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Appendix C

Flow Conditions across the Shock Wave

Since we are considering only a one-dimensional flow, the flow across

the shock wave along any streamline in the three geometries can be obtained

from normal shock relations"5 . However, we note that it is important to use

the appropriate values for Y, the ratio of specific heats, in the shocked

region. Since the normal shock relations are usually obtained assuming Y

constant across the shock wave, below we give a brief derivation of the

normal shock relations with va*iable Y.

For an adiabatic, constant larea, one-dimensional flow with a normal

shock, the equations of contin ity, momentum and energy arels:/
P0vo payv s (Cl)

PO + P0 Vo0 Z P. + P. v 2  (C2)

h + - hs v , (C4)

where the subscript "o" refers to the conditions ahead of the shock wave and

* , . the subscript "s" refers to conditions behind the shock wave. We also need

an additional' constitutive relation to complete the system of equations

"since there are four unknowns. For a mixture of perfect gases, the caloric

equation of state can be written as

37

V .* I -*-o.1



h f (p, P)

I P + h (C4)
Y-lp ref

Assuming that the gas mixture is perfect on each side of the shock wave but

with different values of Y, we have:

ho o 0
h= -•o-j Po (c5)

0 0

and
rs P

* *%

h Y- . (CO)
3 Ys- 1 Ps

*L '

Eliminating va from Eqs. (Cl) and (C2), we have:

Ps p + 0ovo2 (- R) (c7)

0 00

where

R =o (c8)
P5

From Eq. (Cl) we also have the fluid velocity behind the shock (in the

laboratory coordinate system),

ua v -vs v0 (1- R) (c9)

The speed of sound behind the shock is
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a (-)1/2 (C10)
S P

Given the initial conditions (PO. p0 , V0) ahead of the shock, we can

obtain the required parameters ps, us and a. from Eqs. (C7), (09) and

(C10) if we know the parameter R.

By appropriately combining Eqs. (Ci) -(C4) we have obtained the

following quadratic equation for R:

R2(1 + y8  R- (1 + CI) 2Y + (YO C2 + 1)e -31)- 0 (cil)

where

, PO 2C1
C1  - 2 and C2  (C12)

P0 v0 0o-1

From Eq. (C1i), we have

1/2
Yl 2 C() + (y c1)2 -(1 + YS)(y -l)(y C2. 1)

The importance Of Using a variable Y for obtaining power-energy relations

has been discussed in detail in the main text.

Effect of Temperature on th2 Ratio of Specific Heats

In order to use the above formulation we need to know the ratio of

specific heats both ahead of the shock (YO) as well as that behind it

(Y.). In general, these two y' s are different because of differences in

the temperature and the mixture composition. For our particular problem
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the mixture composition may be assumed to be frozen across the shock wave

since we are primarily interested in the mixtures up to the time when

ignition occurs. In this case the specific heat at constant pressure for

the mixture can be written as1s.

m
C- ii. (c°). (C14)Cp j.1 3 p "

where n. is in units of the ýg moles oA' species j per Kg of mix~a~a and

(C). is the standard state constant pressure specific heat for species j in

p j

J/(Kg mole)(K).

For each species, the specific heat at constant pressure has been given

in the form of least square coefficients in Ref. 16 as follows:

(C 0

R = al. ÷ a2 jT + a 3jT 2 + a4 jT 3 + a&ST 4  (C15)

1 .3 3 ./.3 .

where R is the universal gas constant and is equal to 8314.3 J/(Kg mole)(K).

Assuming the mixture behaves like a perfect gas, we can write the ratio of

specific heats, Y, as:

I , . /

C
Y - a (C16)C -R

p

or to use the data in Ref. 16 more directly,

C /R
F'=C/Rp - 1 (1)

pN
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